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1. Introduction 
 

The Starkey Labs Colorado IC Design Center (now the 

AMI Semiconductor Colorado Springs Design Center) is in 

the business of designing and manufacturing ICs for the 

medical marketplace.  The new digital hearing aids we 

design are fully modeled using SystemC.  These large 

models are leveraged for architectural exploration, early 

firmware development, and co-verification with the RTL 

design.  It was stated at the 2005 OCSI Symposium panel 

[4] that a panelist found system simulations with SystemC 

are already too slow for his large systems and unusable for 

next generation systems.  Clearly, simulation speed of 

SystemC is already an issue and will only become more 

important.  We believe that with proper performance 

evaluation and profiling SystemC simulations can be orders 

of magnitude faster. 

This paper will delve into increasing the simulation 

speed of a “standalone” model, that is, a model compiled 

using g++ and not using a commercial simulator.  We use a 

2-part approach to performance optimization.  The first part 

we call gross profiling.  Gross profiling uses specific test 

vectors and is used to minimize system level overhead.  A 

good example of system level overhead is VCD file 

dumping.   Using the gross profiling methodology allowed 

us to attain a 32x simulation speedup.  After gross profiling 

is completed the effects of SystemC datatypes and operators 

become apparent. The second part of performance 

improvement is examining SystemC datatypes and 

operators.  Using this methodology resulted in 

approximately a 2x speedup. 

In the first section we will look at previous work done 

in this area.  We will then take a brief look at profiling tools 

and share our experience.  The two benchmark systems we 

used will be discussed.  Then, the gross profiling method 

will be explained along with benchmark results.  The effects 

of coding style will be explained, again with benchmark 

results.  Importantly, code will be provided to avoid the 

problems found with certain SystemC datatypes and 

operators. 

 

2. Previous Work 
 

 An excellent presentation examining the effects of 

SystemC datatypes, SC_THREADs versus SC_METHODS, 

scheduling, etc. can be found in [1].  This presentation found 

that the single largest performance improvement can be 

found by not using SystemC datatypes.  However, by not 

using SystemC data types not all the Verilog-like data 

manipulation operators, such as bit-selection, range, and 

concatenation, are available.  In [2] a fast bit-accurate 

datatype is proposed that will allow easy data manipulation. 

 A result of this work is available as the Mentor Algorithmic 

C Data Types[3].  However, these datatypes are written to 

be synthesizable which will reduce simulation speed as well 

as the level of available abstraction. 

 

3. Profiling Tools 
 

 The profiler provided with Microsoft Visual Studio 

provided good usable output but would crash whenever 

SC_THREADS were used.   The Linux profiler, gprof, 

works with SC_THREADS and the output, while cryptic, 

did lead us to several substantial performance 

improvements. 

  

4. Benchmark Systems 
 

Two benchmark systems were used. The first represents 

an entire simulation environment for a 260K gate ASIC 

destined for a hearing aid application. In addition to 

numerous functional models, it contains an embedded 

processor, bus functional models (BFMs) to drive/monitor 

the interfaces, and a command line interface. Many different 

BFMs were created. A unique BFM was a simple model of 

analog blocks.  These were added to test register control of 

the analog portion of the ASIC.  For debugging without the 

overhead of a simulator and the cost of a simulator license 

the simulation environment dumps to a VCD trace file.  This 

benchmark is used to evaluate gross profiling and was 

compiled using the SystemC 2.0.1 library.    

The second benchmark represents a simulation 

environment for the most complex block in the ASIC.  The 

block is approximately 38.5K equivalent gates.  In addition 

to the functional model, the simulation environment contains 

a few BFMs.  This benchmark is used to examine the results 

of SystemC datatypes and operators.  The system model was 

determined to be too large for all the code changes required 

to examine this effect.  The second benchmark was compiled 

using the SystemC 2.1 library. 

  

 

5. Testing Methodology 
 

All tests were run on a standalone PC running Microsoft 

Windows XP Pro, version 2002, Service Pack 2.  The 



 

 

profiling platform is a 3.2 GHz Pentium 4 with 1 MB of 

RAM.  In addition, the tests were run on a Linux server 

running Red Hat Linux 7.3 . The server is a dual 2.0 GHz 

Xeon with 6 GB of RAM.  For the PC the test was run five 

times and the wall clock time of each test noted.  There was 

very little discrepancy between the five tests.  The 

benchmark was compiled in release mode (i.e. not debug 

mode) on the Windows machine and with no optimization 

and -O3 optimization enabled on the Linux machine.  The 

Linux machine was tested using the /usr/bin/time utility.  

This utility reports the real, user, and system time.  The real 

time is the elapsed real time between invocation and 

termination.  The user time is the user CPU time.  The 

system time is the system CPU time. When comparing the 

standalone Windows machine to the Linux server we will 

use wall clock time for the Windows machine and the user + 

sys time for the Linux machine.  All times given are in 

seconds.   

 

6. Gross Profiling 
 

The gross profiling methodology is used to minimize 

system level overhead.  The test applied should put the 

system in an idle state (not reset).  In this case the profiling 

tool should report very little activity.  If it does not, the 

reasons need to be examined.  Knowledge of the system is 

very important because the profiler output can be quite 

cryptic. Keep in mind that more than functional models are 

being simulated.  Every piece of code that makes up the 

system simulator is running.  BFMs that were written as 

throw-away code have a bad habit of appearing in the 

release code.  Breakpoints are also useful for determining 

code that is running excessively during idle mode. 

In the case of the large benchmark, the Linux profiling 

utility gprof reported that the command line interface was 

polling for user input every clock cycle.  This polling 

frequency is not required and a poll for user input every 

1,000 clock cycles was found to be sufficient. Again using  

gprof, many system calls to methods with “vcd” in their 

name such as vcd_trace_file, vcd_bool_trace, etc. were 

noticed.  Viewing of VCD files is typically not required 

unless a bug is found.  An option in the make file was added 

to leave VCD dumping off by default.  Lastly we searched 

the code for BFMs, typically at the testbench level,  that do 

not always need to run.  For the vast majority of tests the 

analog blocks are not used.  A make file option to exclude 

the analog blocks by default was added. The instantiation of 

the analog model (using “new”) and the connection of the 

modules ports were excluded using ifdefs.   To summarize 

we optimized the simulation using the following steps: 

1. Use a profiler to look for functions that are called 

excessively 

2. Turn off VCD generation  

3. Exclude blocks that are not required for a 

particular simulation 

The results we obtained are found in Table 1, Table 2, 

and Table 3.  From these results you can see that reducing 

the number of times we polled on the command line by a 

factor of 1,000 resulted in a reduction in runtime of 25% for 

the Windows machine, 4% for the unoptimized Linux 

machine, and 6% for the optimized Linux machine.  

Supressing VCD output resulted in a further reduction of 

91% for the Windows machine, 90% for the unoptimized 

Linux machine, and 91% for the optimized Linux machine.   

Excluding the analog blocks resulted in a further reduction 

of 53% for the Windows machine, 50% for the unoptimized 

Linux machine, and 46% for the optimized Linux machine. 

Overall the total reduction in runtime was 96.9% for the 

Windows machine, 95.1% for the unoptimized Linux 

machine, and 95.6% for the optimized Linux machine.  This 

represents a speed-up of 32.6, 20.5, and 22.7 respectively. 

 

CMD Line VCD Analog Windows Wall Clock 

Time 

Yes Yes Yes 173.0 

No Yes Yes 130.0 

No No Yes 11.3 

No  No No 5.3 

Table 1: Gross Profiling results – Windows 

 

 

CMD 

Line 

VCD Analog real user sys 

Yes Yes Yes 195.1 189.3 5.32 

No Yes Yes 186.7 182.9 2.96 

No No Yes 20.2 18.7 0.07 

No  No No 9.50 9.47 0.02 

Table 2: Gross Profiling results – Linux, no optimization 

 

 

CMD 

Line 

VCD Analog real user sys 

Yes Yes Yes 178.0 173.0 5.00 

No Yes Yes 167.3 165.6 1.67 

No No Yes 14.4 14.4 0.04 

No  No No 7.9 7.8 0.04 

Table 3: Gross Profiling results – Linux, -O3 

optimization 

 

7. Overhead of SystemC Datatypes and 

Operators 

 
 Now that gross profiling is complete, the effects of 

SystemC datatypes and operators become significant and 

apparent.  It is well known that use of SystemC data types 

will cause significant overhead in simulation.  We have 



 

 

anecdotal evidence that use of the concatenation operator 

causes a large overhead and to a lesser extent the use of bit-

selection and range operations.  Obviously each variable 

needs to be a SystemC type.  In a later section we show how 

these operations can be performed without the variables 

being SystemC types.     

To test SystemC datatypes and operators the second 

benchmark is used.  The original block uses no SystemC 

data types.  We then measure the overhead of simply making 

the variables SystemC types.  We then benchmark all the 

permutations of these three constructs.  In contrast to gross 

profiling, we want to use a test that fully exercises the block. 

 An example of the SystemC bit-selection operator 

appears in Figure 1. This operation will select bit three from 

variable B and assign it to A. 

 

 
An example of the SystemC range operator appears in 

Figure 2.  This operation will select the lower nibble from 

variable B and assign it to variable A.  

 

 
 

An example of the SystemC concatenation operator appears 

in Figure 3.  This operation will concatenate variables B, C, 

and D and assign it to variable A. 

 

 
 

As can be seen in Table 4, Table 5, and Table 6 the use 

of SystemC datatypes results in a performance degradation 

of 78% in Windows, 150% in unoptimized Linux, and 90% 

in optimized Linux.  Surprisingly, there is no discernable 

trend to report on the use of bit-selection, range, or 

concatenation.  For the Windows test, the slowest 

combination is bit-selection only while the unoptimized 

Linux test the combination of bit-selection and 

concatenation resulted in the slowest test. For the optimized 

Linux test, range selection was found to be the slowest.  

Also interesting to note is that some combination of 

operators run faster than the use of no operators!  The only 

hard fact that can be gleaned from these results is to avoid 

the use of SystemC types.  In the next section we provide 

alternative methods for the bit-selection, range, and 

concatenation operators. 

Using gprof we did note that with the SystemC 2.0.1 

library each concatenation operator produced numerous 

“new” and “delete” operations.  This does not seem to be the 

case with the SystemC 2.1 library.                                          

  

SystemC 

Vars 

Bit-

select 

Range Concat Wall Time 

No No No No 208.9 

Yes No No No 372.8 

Yes No No Yes 350.9 

Yes No  Yes No 366.8 

Yes No Yes Yes 363.9 

Yes Yes No No 416.9 

Yes Yes No Yes 397.4 

Yes Yes Yes No 391.1 

Yes Yes Yes Yes 400.1 

Table 4: Performance of SystemC Operators – Windows 

 

 

SysC 

Vars 

Bit-

select 

Range Concat real user sys 

No No No No 557.6 551.5 0.77 

Yes No No No 1390.1 1381.9 0.98 

Yes No No Yes 1417.6 1411.2 0.13 

Yes No  Yes No 1428.8 1422.8 0.17 

Yes No Yes Yes 1380.3 1373.9 0.35 

Yes Yes No No 1452.5 1447.0 0.11 

Yes Yes No Yes 1519.6 1513.3 0.54 

Yes Yes Yes No 1503.7 1497.5 0.25 

Yes Yes Yes Yes 1512.7 1504.9 0.4 

Table 5: Performance of SystemC Operators - Linux, no 

optimization 

 

 

SysC 

Vars 

Bit-

select 

Range Concat real user sys 

No No No No 288.7 282.2 0.48 

Yes No No No 543.2 537.8 0.05 

Yes No No Yes 504.1 499.0 0.13 

Yes No  Yes No 612.5 607.1 0.14 

Yes No Yes Yes 481.2 475.9 0.22 

Yes Yes No No 530.2 525.0 0.11 

Yes Yes No Yes 522.1 517.1 0.24 

Yes Yes Yes No 472.0 464.9 0.55 

Yes Yes Yes Yes 541.0 535.3 0.21 

Table 6: Performance of SystemC Operators - Linux, -

O3 optimization 

 

8. Methods to Replace the Bit-Selection, 

Range, and Concatenation Operators 
 

In this section we will provide alternative methods for 

the bit-selection, range, and concatenation operators so that 

A=B[3]; 

Figure 1: SystemC Bit-Selection Operator 

A=(B,C,D); 

A=B.range(3,0); 

Figure 2: SystemC Range Operator 

Figure 3: SystemC Concatention Operator 



 

 

native C types can be used.  We have found in the creation 

of our models that these three operators are the dominant 

reason designers require SystemC datatypes. In the interest 

of space no consistency checking of types and bit-widths are 

included in these examples.   

The bit-selection operator, as seen in Figure 1, can be 

replaced by the method in Figure 4.  The replacement for 

Figure 1 using this method is A=return_bit(B, 3).  A bit 

insertion method is in Figure 5.  If we want to insert a binary 

one in bit position three of variable B we could use: B = 

insert_bit(B, true, 3).  This is equivalent to B[3] = 1 using 

the SystemC bit-selection operator. 

The range operator, as seen in Figure 2, can be replaced 

by the method in Figure 6.  The replacement for Figure 2 

using this method is A=return_range(B, 3, 0).  To insert a 

range use the method in Figure 7.  If we wanted to insert 0xF 

into A[4:1] we could use: A=insert_range(A, 0xF, 1, 4). 

This is equivalent to A.range(4,1) = 0xF using the SystemC 

range operator.   

The concatenation operator in Figure 3 can be replaced 

by multiple calls to method insert_range.  For example, 

suppose variable B, C, and D in Figure 3 are nibbles. 

Variable A can be computed by the code in Figure 8. 

 

 
 

 

 

 
 

9. Summary 

 
This paper gives the user a basis for dramatically increasing 

the performance of SystemC simulations.  By only including 

blocks that are required for a particular simulation, turning 

off VCD dumping, and looking for inefficiencies in BFMs 

and testbench level code, we were able to achieve an 

approximately 32X speedup.  Then, by avoiding the use of 

SystemC types whenever possible we were able to achieve 

an additional 1.5X speedup.  We also illustrated 

replacements for the SystemC bit-selection, range, and 

concatenation operators that function with native C types. 
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template<class TYPE> 
inline TYPE insert_range(TYPE full_in, 
TYPE range_in, int startbit, int 
bitwidth) 
{ 
  TYPE mask; 
  TYPE mask_out; 
  mask = (1 << bitwidth) - 1; 
  mask_out = ~(mask << startbit); 
  return (full_in & mask_out) |        
  ((range_in & mask) << startbit); 
} 

A = insert_range(A, B, 8, 4); 
A = insert_range(A, C, 4, 4); 
A = insert_range(A, D, 0, 4);  

template<class TYPE> 
inline bool return_bit(TYPE value, int 
position)  
{ 
  return (bool)((value >> position) & 
  1); 
} 

Figure 4: Bit-Selection for Native C Types 

template<class TYPE> 
inline TYPE insert_bit(TYPE value, 
bool bit_value, int position)  
{ 
  TYPE MASK = 1; 
  if (bit_value) 
    return value | (MASK <<           
    position); 
  else 
    return value & ~(MASK <<          
    position); 
} 

Figure 5: Bit-insertion for Native C Types 

 
template<class TYPE> 
inline int return_range(TYPE value, 
int high_range, int low_range) 
{ 
  return (value >> low_range) & ((1 << 
  (high_range-low_range+1)) - 1)  
} 

Figure 6: Range selection for Native C Types 

Figure 7: Range Insertion for Native C Types 

Figure 8: Concatenation for Native C Types 


