

 Dramatically Increase the Performance of SystemC Simulations

 Dr. Greg Tumbush, AMI Semiconductor, Colorado Springs, CO

Mark Hupp, AMI Semiconductor, Colorado Springs, CO

1. Introduction

The Starkey Labs Colorado IC Design Center (now the

AMI Semiconductor Colorado Springs Design Center) is in

the business of designing and manufacturing ICs for the

medical marketplace. The new digital hearing aids we

design are fully modeled using SystemC. These large

models are leveraged for architectural exploration, early

firmware development, and co-verification with the RTL

design. It was stated at the 2005 OCSI Symposium panel

[4] that a panelist found system simulations with SystemC

are already too slow for his large systems and unusable for

next generation systems. Clearly, simulation speed of

SystemC is already an issue and will only become more

important. We believe that with proper performance

evaluation and profiling SystemC simulations can be orders

of magnitude faster.

This paper will delve into increasing the simulation

speed of a “standalone” model, that is, a model compiled

using g++ and not using a commercial simulator. We use a

2-part approach to performance optimization. The first part

we call gross profiling. Gross profiling uses specific test

vectors and is used to minimize system level overhead. A

good example of system level overhead is VCD file

dumping. Using the gross profiling methodology allowed

us to attain a 32x simulation speedup. After gross profiling

is completed the effects of SystemC datatypes and operators

become apparent. The second part of performance

improvement is examining SystemC datatypes and

operators. Using this methodology resulted in

approximately a 2x speedup.

In the first section we will look at previous work done

in this area. We will then take a brief look at profiling tools

and share our experience. The two benchmark systems we

used will be discussed. Then, the gross profiling method

will be explained along with benchmark results. The effects

of coding style will be explained, again with benchmark

results. Importantly, code will be provided to avoid the

problems found with certain SystemC datatypes and

operators.

2. Previous Work

 An excellent presentation examining the effects of

SystemC datatypes, SC_THREADs versus SC_METHODS,

scheduling, etc. can be found in [1]. This presentation found

that the single largest performance improvement can be

found by not using SystemC datatypes. However, by not

using SystemC data types not all the Verilog-like data

manipulation operators, such as bit-selection, range, and

concatenation, are available. In [2] a fast bit-accurate

datatype is proposed that will allow easy data manipulation.

 A result of this work is available as the Mentor Algorithmic

C Data Types[3]. However, these datatypes are written to

be synthesizable which will reduce simulation speed as well

as the level of available abstraction.

3. Profiling Tools

 The profiler provided with Microsoft Visual Studio

provided good usable output but would crash whenever

SC_THREADS were used. The Linux profiler, gprof,

works with SC_THREADS and the output, while cryptic,

did lead us to several substantial performance

improvements.

4. Benchmark Systems

Two benchmark systems were used. The first represents

an entire simulation environment for a 260K gate ASIC

destined for a hearing aid application. In addition to

numerous functional models, it contains an embedded

processor, bus functional models (BFMs) to drive/monitor

the interfaces, and a command line interface. Many different

BFMs were created. A unique BFM was a simple model of

analog blocks. These were added to test register control of

the analog portion of the ASIC. For debugging without the

overhead of a simulator and the cost of a simulator license

the simulation environment dumps to a VCD trace file. This

benchmark is used to evaluate gross profiling and was

compiled using the SystemC 2.0.1 library.

The second benchmark represents a simulation

environment for the most complex block in the ASIC. The

block is approximately 38.5K equivalent gates. In addition

to the functional model, the simulation environment contains

a few BFMs. This benchmark is used to examine the results

of SystemC datatypes and operators. The system model was

determined to be too large for all the code changes required

to examine this effect. The second benchmark was compiled

using the SystemC 2.1 library.

5. Testing Methodology

All tests were run on a standalone PC running Microsoft

Windows XP Pro, version 2002, Service Pack 2. The

profiling platform is a 3.2 GHz Pentium 4 with 1 MB of

RAM. In addition, the tests were run on a Linux server

running Red Hat Linux 7.3 . The server is a dual 2.0 GHz

Xeon with 6 GB of RAM. For the PC the test was run five

times and the wall clock time of each test noted. There was

very little discrepancy between the five tests. The

benchmark was compiled in release mode (i.e. not debug

mode) on the Windows machine and with no optimization

and -O3 optimization enabled on the Linux machine. The

Linux machine was tested using the /usr/bin/time utility.

This utility reports the real, user, and system time. The real

time is the elapsed real time between invocation and

termination. The user time is the user CPU time. The

system time is the system CPU time. When comparing the

standalone Windows machine to the Linux server we will

use wall clock time for the Windows machine and the user +

sys time for the Linux machine. All times given are in

seconds.

6. Gross Profiling

The gross profiling methodology is used to minimize

system level overhead. The test applied should put the

system in an idle state (not reset). In this case the profiling

tool should report very little activity. If it does not, the

reasons need to be examined. Knowledge of the system is

very important because the profiler output can be quite

cryptic. Keep in mind that more than functional models are

being simulated. Every piece of code that makes up the

system simulator is running. BFMs that were written as

throw-away code have a bad habit of appearing in the

release code. Breakpoints are also useful for determining

code that is running excessively during idle mode.

In the case of the large benchmark, the Linux profiling

utility gprof reported that the command line interface was

polling for user input every clock cycle. This polling

frequency is not required and a poll for user input every

1,000 clock cycles was found to be sufficient. Again using

gprof, many system calls to methods with “vcd” in their

name such as vcd_trace_file, vcd_bool_trace, etc. were

noticed. Viewing of VCD files is typically not required

unless a bug is found. An option in the make file was added

to leave VCD dumping off by default. Lastly we searched

the code for BFMs, typically at the testbench level, that do

not always need to run. For the vast majority of tests the

analog blocks are not used. A make file option to exclude

the analog blocks by default was added. The instantiation of

the analog model (using “new”) and the connection of the

modules ports were excluded using ifdefs. To summarize

we optimized the simulation using the following steps:

1. Use a profiler to look for functions that are called

excessively

2. Turn off VCD generation

3. Exclude blocks that are not required for a

particular simulation

The results we obtained are found in Table 1, Table 2,

and Table 3. From these results you can see that reducing

the number of times we polled on the command line by a

factor of 1,000 resulted in a reduction in runtime of 25% for

the Windows machine, 4% for the unoptimized Linux

machine, and 6% for the optimized Linux machine.

Supressing VCD output resulted in a further reduction of

91% for the Windows machine, 90% for the unoptimized

Linux machine, and 91% for the optimized Linux machine.

Excluding the analog blocks resulted in a further reduction

of 53% for the Windows machine, 50% for the unoptimized

Linux machine, and 46% for the optimized Linux machine.

Overall the total reduction in runtime was 96.9% for the

Windows machine, 95.1% for the unoptimized Linux

machine, and 95.6% for the optimized Linux machine. This

represents a speed-up of 32.6, 20.5, and 22.7 respectively.

CMD Line VCD Analog Windows Wall Clock

Time

Yes Yes Yes 173.0

No Yes Yes 130.0

No No Yes 11.3

No No No 5.3

Table 1: Gross Profiling results – Windows

CMD

Line

VCD Analog real user sys

Yes Yes Yes 195.1 189.3 5.32

No Yes Yes 186.7 182.9 2.96

No No Yes 20.2 18.7 0.07

No No No 9.50 9.47 0.02

Table 2: Gross Profiling results – Linux, no optimization

CMD

Line

VCD Analog real user sys

Yes Yes Yes 178.0 173.0 5.00

No Yes Yes 167.3 165.6 1.67

No No Yes 14.4 14.4 0.04

No No No 7.9 7.8 0.04

Table 3: Gross Profiling results – Linux, -O3

optimization

7. Overhead of SystemC Datatypes and

Operators

 Now that gross profiling is complete, the effects of

SystemC datatypes and operators become significant and

apparent. It is well known that use of SystemC data types

will cause significant overhead in simulation. We have

anecdotal evidence that use of the concatenation operator

causes a large overhead and to a lesser extent the use of bit-

selection and range operations. Obviously each variable

needs to be a SystemC type. In a later section we show how

these operations can be performed without the variables

being SystemC types.

To test SystemC datatypes and operators the second

benchmark is used. The original block uses no SystemC

data types. We then measure the overhead of simply making

the variables SystemC types. We then benchmark all the

permutations of these three constructs. In contrast to gross

profiling, we want to use a test that fully exercises the block.

 An example of the SystemC bit-selection operator

appears in Figure 1. This operation will select bit three from

variable B and assign it to A.

An example of the SystemC range operator appears in

Figure 2. This operation will select the lower nibble from

variable B and assign it to variable A.

An example of the SystemC concatenation operator appears

in Figure 3. This operation will concatenate variables B, C,

and D and assign it to variable A.

As can be seen in Table 4, Table 5, and Table 6 the use

of SystemC datatypes results in a performance degradation

of 78% in Windows, 150% in unoptimized Linux, and 90%

in optimized Linux. Surprisingly, there is no discernable

trend to report on the use of bit-selection, range, or

concatenation. For the Windows test, the slowest

combination is bit-selection only while the unoptimized

Linux test the combination of bit-selection and

concatenation resulted in the slowest test. For the optimized

Linux test, range selection was found to be the slowest.

Also interesting to note is that some combination of

operators run faster than the use of no operators! The only

hard fact that can be gleaned from these results is to avoid

the use of SystemC types. In the next section we provide

alternative methods for the bit-selection, range, and

concatenation operators.

Using gprof we did note that with the SystemC 2.0.1

library each concatenation operator produced numerous

“new” and “delete” operations. This does not seem to be the

case with the SystemC 2.1 library.

SystemC

Vars

Bit-

select

Range Concat Wall Time

No No No No 208.9

Yes No No No 372.8

Yes No No Yes 350.9

Yes No Yes No 366.8

Yes No Yes Yes 363.9

Yes Yes No No 416.9

Yes Yes No Yes 397.4

Yes Yes Yes No 391.1

Yes Yes Yes Yes 400.1

Table 4: Performance of SystemC Operators – Windows

SysC

Vars

Bit-

select

Range Concat real user sys

No No No No 557.6 551.5 0.77

Yes No No No 1390.1 1381.9 0.98

Yes No No Yes 1417.6 1411.2 0.13

Yes No Yes No 1428.8 1422.8 0.17

Yes No Yes Yes 1380.3 1373.9 0.35

Yes Yes No No 1452.5 1447.0 0.11

Yes Yes No Yes 1519.6 1513.3 0.54

Yes Yes Yes No 1503.7 1497.5 0.25

Yes Yes Yes Yes 1512.7 1504.9 0.4

Table 5: Performance of SystemC Operators - Linux, no

optimization

SysC

Vars

Bit-

select

Range Concat real user sys

No No No No 288.7 282.2 0.48

Yes No No No 543.2 537.8 0.05

Yes No No Yes 504.1 499.0 0.13

Yes No Yes No 612.5 607.1 0.14

Yes No Yes Yes 481.2 475.9 0.22

Yes Yes No No 530.2 525.0 0.11

Yes Yes No Yes 522.1 517.1 0.24

Yes Yes Yes No 472.0 464.9 0.55

Yes Yes Yes Yes 541.0 535.3 0.21

Table 6: Performance of SystemC Operators - Linux, -

O3 optimization

8. Methods to Replace the Bit-Selection,

Range, and Concatenation Operators

In this section we will provide alternative methods for

the bit-selection, range, and concatenation operators so that

A=B[3];

Figure 1: SystemC Bit-Selection Operator

A=(B,C,D);

A=B.range(3,0);

Figure 2: SystemC Range Operator

Figure 3: SystemC Concatention Operator

native C types can be used. We have found in the creation

of our models that these three operators are the dominant

reason designers require SystemC datatypes. In the interest

of space no consistency checking of types and bit-widths are

included in these examples.

The bit-selection operator, as seen in Figure 1, can be

replaced by the method in Figure 4. The replacement for

Figure 1 using this method is A=return_bit(B, 3). A bit

insertion method is in Figure 5. If we want to insert a binary

one in bit position three of variable B we could use: B =

insert_bit(B, true, 3). This is equivalent to B[3] = 1 using

the SystemC bit-selection operator.

The range operator, as seen in Figure 2, can be replaced

by the method in Figure 6. The replacement for Figure 2

using this method is A=return_range(B, 3, 0). To insert a

range use the method in Figure 7. If we wanted to insert 0xF

into A[4:1] we could use: A=insert_range(A, 0xF, 1, 4).

This is equivalent to A.range(4,1) = 0xF using the SystemC

range operator.

The concatenation operator in Figure 3 can be replaced

by multiple calls to method insert_range. For example,

suppose variable B, C, and D in Figure 3 are nibbles.

Variable A can be computed by the code in Figure 8.

9. Summary

This paper gives the user a basis for dramatically increasing

the performance of SystemC simulations. By only including

blocks that are required for a particular simulation, turning

off VCD dumping, and looking for inefficiencies in BFMs

and testbench level code, we were able to achieve an

approximately 32X speedup. Then, by avoiding the use of

SystemC types whenever possible we were able to achieve

an additional 1.5X speedup. We also illustrated

replacements for the SystemC bit-selection, range, and

concatenation operators that function with native C types.

10. References

1. Adam Donlin. Optimizing Models of an FPGA

Embedded System. 2
nd

 North American SystemC Users

Group, www.nascug.org

2. Andres Takach, Simon Waters, and Peter Gutberlet, Fast

bit-accurate C++ datatypes for functional system

verification and synthesis, 2004 Forum of Design

Languages.

3. Mentor Graphics, Inc., Algorithmic C Data Types,

http://www.mentor.com/products/c-based_design/index.cfm

4. 2005 OSCI Technology Symposium: “Isn’t it Time You

Moved Up to SystemC”, Panel: The Business of ESL

template<class TYPE>
inline TYPE insert_range(TYPE full_in,
TYPE range_in, int startbit, int
bitwidth)
{
 TYPE mask;
 TYPE mask_out;
 mask = (1 << bitwidth) - 1;
 mask_out = ~(mask << startbit);
 return (full_in & mask_out) |
 ((range_in & mask) << startbit);
}

A = insert_range(A, B, 8, 4);
A = insert_range(A, C, 4, 4);
A = insert_range(A, D, 0, 4);

template<class TYPE>
inline bool return_bit(TYPE value, int
position)
{
 return (bool)((value >> position) &
 1);
}

Figure 4: Bit-Selection for Native C Types

template<class TYPE>
inline TYPE insert_bit(TYPE value,
bool bit_value, int position)
{
 TYPE MASK = 1;
 if (bit_value)
 return value | (MASK <<
 position);
 else
 return value & ~(MASK <<
 position);
}

Figure 5: Bit-insertion for Native C Types

template<class TYPE>
inline int return_range(TYPE value,
int high_range, int low_range)
{
 return (value >> low_range) & ((1 <<
 (high_range-low_range+1)) - 1)
}

Figure 6: Range selection for Native C Types

Figure 7: Range Insertion for Native C Types

Figure 8: Concatenation for Native C Types

